Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sensors (Basel) ; 23(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37447667

RESUMO

Pyroelectric infrared sensors (PIR) are widely used as infrared (IR) detectors due to their basic implementation, low cost, low power, and performance. Combined with a Fresnel lens, they can be used as a binary detector in applications of presence and motion control. Furthermore, due to their features, they can be used in autonomous intelligent devices or included in robotics applications or sensor networks. In this work, two neural processing architectures are presented: (1) an analog processing approach to achieve the behavior of a presynaptic neuron from a PIR sensor. An analog circuit similar to the leaky integrate and fire model is implemented to be able to generate spiking rates proportional to the IR stimuli received at a PIR sensor. (2) An embedded postsynaptic neuron where a spiking neural network matrix together with an algorithm based on digital processing techniques is introduced. This structure allows connecting a set of sensors to the post-synaptic circuit emulating an optic nerve. As a case study, the entire neural processing approach presented in this paper is applied to optical flow detection considering a four-PIR array as input. The results validate both the spiking approach for an analog sensor presented and the ability to retrieve the analog information sent as spike trains in a simulated optic nerve.


Assuntos
Neurônios , Termorreceptores , Neurônios/fisiologia , Movimento/fisiologia , Redes Neurais de Computação , Algoritmos
3.
Sensors (Basel) ; 23(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36772338

RESUMO

Nowadays, the study of the gait by analyzing the distribution of plantar pressure is a well-established technique. The use of intelligent insoles allows real-time monitoring of the user. Thus, collecting and analyzing information is a more accurate process than consultations in so-called gait laboratories. Most of the previous published studies consider the composition and operation of these insoles based on resistive sensors. However, the use of capacitive sensors could provide better results, in terms of linear behavior under the pressure exerted. This behavior depends on the properties of the dielectric used. In this work, the design and implementation of an intelligent plantar insole composed of capacitive sensors is proposed. The dielectric used is a polydimethylsiloxane (PDMS)-based composition. The sensorized plantar insole developed achieves its purpose as a tool for collecting pressure in different areas of the sole of the foot. The fundamentals and details of the composition, manufacture, and implementation of the insole and the system used to collect data, as well as the data samples, are shown. Finally, a comparison of the behavior of both insoles, resistive and capacitive sensor-equipped, is made. The prototype presented lays the foundation for the development of a tool to support the diagnosis of gait abnormalities.


Assuntos
Marcha , Sapatos , Pressão , , Dimetilpolisiloxanos , Caminhada
4.
Front Neurorobot ; 14: 590163, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328951

RESUMO

Compared to classic robotics, biological nervous systems respond to stimuli in a fast and efficient way regarding the body motor actions. Decision making, once the sensory information arrives to the brain, is in the order of ms, while the whole process from sensing to movement requires tens of ms. Classic robotic systems usually require complex computational abilities. Key differences between biological systems and robotic machines lie in the way information is coded and transmitted. A neuron is the "basic" element that constitutes biological nervous systems. Neurons communicate in an event-driven way through small currents or ionic pulses (spikes). When neurons are arranged in networks, they allow not only for the processing of sensory information, but also for the actuation over the muscles in the same spiking manner. This paper presents the application of a classic motor control model (proportional-integral-derivative) developed with the biological spike processing principle, including the motor actuation with time enlarged spikes instead of the classic pulse-width-modulation. This closed-loop control model, called spike-based PID controller (sPID), was improved and adapted for a dual FPGA-based system to control the four joints of a bioinspired light robot (BioRob X5), called event-driven BioRob (ED-BioRob). The use of spiking signals allowed the system to achieve a current consumption bellow 1A for the entire 4 DoF working at the same time. Furthermore, the robot joints commands can be received from a population of silicon-neurons running on the Dynap-SE platform. Thus, our proposal aims to bridge the gap between a general purpose processing analog neuromorphic hardware and the spiking actuation of a robotic platform.

5.
Sensors (Basel) ; 18(1)2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-29301221

RESUMO

Servomotors have already been around for some decades and they are extremely popular among roboticists due to their simple control technique, reliability and low-cost. They are usually controlled by using Pulse Width Modulation (PWM) and this paper aims to keep the idea of simplicity and low-cost, while introducing a new control technique: Pulse Frequency Modulation (PFM). The objective of this paper is to focus on our development of a low-cost servomotor controller which will allow the research community to use them with PFM. A low-cost commercial servomotor is used as the base system for the development: a small PCB that fits inside the case and allocates all the electronic components to control the motor has been designed to replace the original. The potentiometer is retained as the feedback sensor and a microcontroller is responsible for controlling the position of the motor. The paper compares the performance of a PWM and a PFM controlled servomotor. The comparison shows that the servomotor with our controller achieves a faster mechanism for switching targets and a lower latency. This controller can be used with neuromorphic systems to remove the conversion from events to PWM.

6.
Sensors (Basel) ; 13(11): 15805-32, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24264330

RESUMO

In this paper we present a complete spike-based architecture: from a Dynamic Vision Sensor (retina) to a stereo head robotic platform. The aim of this research is to reproduce intended movements performed by humans taking into account as many features as possible from the biological point of view. This paper fills the gap between current spike silicon sensors and robotic actuators by applying a spike processing strategy to the data flows in real time. The architecture is divided into layers: the retina, visual information processing, the trajectory generator layer which uses a neuroinspired algorithm (SVITE) that can be replicated into as many times as DoF the robot has; and finally the actuation layer to supply the spikes to the robot (using PFM). All the layers do their tasks in a spike-processing mode, and they communicate each other through the neuro-inspired AER protocol. The open-loop controller is implemented on FPGA using AER interfaces developed by RTC Lab. Experimental results reveal the viability of this spike-based controller. Two main advantages are: low hardware resources (2% of a Xilinx Spartan 6) and power requirements (3.4 W) to control a robot with a high number of DoF (up to 100 for a Xilinx Spartan 6). It also evidences the suitable use of AER as a communication protocol between processing and actuation.


Assuntos
Movimento (Física) , Robótica , Algoritmos , Humanos , Visão Ocular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...